Abstract¶
This article gives a detailed explanation of the weight vector updates in word2vec C implementation.
And find some not correct procedures that used train skip-gram model in the code.
Introduction¶
Word2vec is a famous word embeddings approch. See detailed at Word2vec
Prerequisite¶
some properties of sigmoid function¶
(0)
$$ \sigma' (y) = \sigma (y) \cdot [ 1 - \sigma (y) ] \cdot y' $$visualize a property of sigmoid function¶
I can't prove it, my major is not math
%pylab inline --no-import-all
import numpy as np
x = np.random.randn(1000, 100)
m = np.mean(x, axis=1)
def sigmoid(a):
return 1.0 / (1 + np.exp(-a))
m_s = sigmoid(m)
m_x_s = np.mean(sigmoid(x), axis=1)
plt.scatter(m_x_s, m_s)
plt.show()
plt.plot(m_x_s, m_s)
plt.show()
hierarchical softmax¶
(1) $$ p(w | w_I) = \prod_{j=1}^{L(w)-1} \sigma \left( [\![ n(w, j+1) = ch(n(w, j)) ]\!] \cdot {v'_{n(w, j)}}^T v_{w_I} \right) $$
the hierarchical softmax gradient¶
First let
$$ hs_j = [\![ n(w, j+1) = ch(n(w, j)) ]\!] \cdot {v'_{n(w, j)}}^T v_{w_I} $$And
$$ \frac {d hs_j} {v'_{n(w, j)}} = [\![ n(w, j+1) = ch(n(w, j)) ]\!] \cdot v_{w_I} $$$$ \frac {d hs_j} {v_{w_I}} = [\![ n(w, j+1) = ch(n(w, j)) ]\!] \cdot v'_{n(w, j)} $$Then $$ \nabla \log p(w | w_I) = \sum_{j=1}^{L(w)-1} \frac{1} {\sigma (hs_j)} \cdot \sigma' (hs_j) \cdot hs'_j $$
According to equation (0) $$ \nabla \log p(w | w_I) = \sum_{j=1}^{L(w)-1} \frac{1} {\sigma (hs_j)} \cdot \sigma (hs_j) \cdot [ 1 - \sigma (hs_j) ] \cdot hs'_j $$
simplify $$ \nabla \log p(w | w_I) = \sum_{j=1}^{L(w)-1} [ 1 - \sigma (hs_j) ] \cdot hs'_j $$
When update $ v_{w_I} $, we got gradient is:
$$ \nabla \log p(w | w_I) = \sum_{j=1}^{L(w)-1} [ 1 - \sigma (hs_j) ] \cdot [\![ n(w, j+1) = ch(n(w, j)) ]\!] \cdot v'_{n(w, j)} $$When update $ v'_{n(w, j)}$ for each $j \in [1, L(w)-1]$, we got gradient is:
$$ \nabla \log p(w | w_I) = [ 1 - \sigma (hs_j) ] \cdot [\![ n(w, j+1) = ch(n(w, j)) ]\!] \cdot v_{w_I} $$negative sampling¶
(2) $$ \log p(w_O | w_I) = \log \sigma( {v'_{w_O}}^T v_{w_I} ) + \sum_{i}^{k} E_{w_i \sim P_n(w)} \left[ \log \sigma( {-v'_{w_i}}^T v_{w_I} ) \right] $$
the negative sampling gradient¶
First let
$$ ns_{xI} = {v'_{w_x}}^T \cdot v_{w_I} $$$w_x \in \{ w_O, w_i \sim P_n(w) \}$
And
the gradients $ns_{xI}$ according to ${v'_{w_x}}$ and $v_{w_I}$ are:
$$ \frac {d ns_{xI}} {v'_{w_x}} = v_{w_I} $$$$ \frac {d ns_{xI}} {v_{w_I}} = v'_{w_x} $$Then
$$ \nabla \log p(w_O | w_I) = \frac {1} { \sigma(ns_{OI}) } \cdot \sigma'(ns_{OI}) \cdot ns'_{OI} + \sum_{i}^{k} E_{w_i \sim P_n(w)} \left[ \frac {1} { \sigma(-ns_{iI}) } \cdot \sigma'( -ns_{iI} ) \cdot -ns'_{iI} \right] $$According to equation (0)
$$ \nabla \log p(w_O | w_I) = \frac {1} { \sigma(ns_{OI}) } \cdot \sigma(ns_{OI}) \cdot [ 1 - \sigma(ns_{OI}) ] \cdot ns'_{OI} + \sum_{i}^{k} E_{w_i \sim P_n(w)} \left[ \frac {1} { \sigma(-ns_{iI}) } \cdot \sigma ( -ns_{iI} ) \cdot [ 1 - \sigma(-ns_{iI}) ] \cdot -ns'_{iI} \right] $$simplify
$$ \nabla \log p(w_O | w_I) = [ 1 - \sigma(ns_{OI}) ] \cdot ns'_{OI} + \sum_{i}^{k} E_{w_i \sim P_n(w)} \left[ [ 1 - \sigma(-ns_{iI}) ] \cdot -ns'_{iI} \right] $$When update $ v'_{w_O} $, we got gradient is:
$$ \nabla \log p(w_O | w_I) = [ 1 - \sigma(ns_{OI}) ] \cdot v_{w_I} $$When update $ v_{w_I} $, we got gradient is:
$$ \nabla \log p(w_O | w_I) = [ 1 - \sigma(ns_{OI}) ] \cdot v'_{w_O} + \sum_{i}^{k} E_{w_i \sim P_n(w)} \left[ [ 1 - \sigma(-ns_{iI}) ] \cdot -v'_{w_i} \right] $$When update $ v'_{w_i}, w_i \sim P_n{w} $, we got gradient is:
$$ \nabla \log p(w_O | w_I) = [ 1 - \sigma(-ns_{iI}) ] \cdot -v_{w_I} $$continuous bag of words¶
from IPython.display import Image
c
Image("./cbow.png")
maximize the following average log probability:¶
(3) $$ \frac{1}{T} \sum_{t=1}^{T} \sum_{-c \leq{j} \leq{c},j\neq{0}} \log{p(w_t | w_{t+j})} $$
I change the index $j$ to index $q$ due to conflict with index $j$ in hierarchical softmax.
(3) $$ \frac{1}{T} \sum_{t=1}^{T} \sum_{-c \leq{q} \leq{c},q\neq{0}} \log{p(w_t | w_{t+q})} $$
And
$$ \nabla \sum_{-c \leq{q} \leq{c},q\neq{0}} \log{p(w_t | w_{t+q})} = \sum_{-c \leq{q} \leq{c},q\neq{0}} \nabla \log{p(w_t | w_{t+q})} $$First compute the mean of window wods vector¶
Let $$ v_{mcw} = \frac{1} {cw} \sum_{-c \leq{q} \leq{c},q\neq{0}} v_{w_{t+q}} $$
// window word count
cw = 0;
for (a = b; a < window * 2 + 1 - b; a++) if (a != window) {
// sentence_position is sp
// c in [sp - (window - b), sp + (window - b)]
c = sentence_position - window + a;
if (c < 0) continue;
// may be is break?
// because c is increase
if (c >= sentence_length) continue;
last_word = sen[c];
if (last_word == -1) continue;
// sum window words' vectors
for (c = 0; c < layer1_size; c++) neu1[c] += syn0[c + last_word * layer1_size];
cw++;
}
if (cw) {
for (c = 0; c < layer1_size; c++) neu1[c] /= cw;
// ...
"neu1"
is $v_{mcw}$
when using hierarchical softmax¶
$w_t$ is $w$, $w_{t+q}$ is $w_I$ in equation(1)
And
$$ hs_j = [\![ n(w_t, j+1) = ch(n(w_t, j)) ]\!] \cdot {v'_{n(w_t, j)}}^T v_{w_{t+q}} $$$q \in [-c, c], q\neq{0}$
Then
When update $ v_{w_{t+q}}$ for each $q \in [-c, c], q\neq{0}$, we got gradient is:
$$ \nabla \log p(w_t | w_{t+q}) = \sum_{j=1}^{L(w_t)-1} [ 1 - \sigma (hs_j) ] \cdot [\![ n(w_t, j+1) = ch(n(w_t, j)) ]\!] \cdot v'_{n(w_t, j)} $$$$ \nabla \sum_{-c \leq{q} \leq{c},q\neq{0}} \log{p(w_t | w_{t+q})} = \nabla \log p(w_t | w_{t+q}) $$When update $ v'_{n(w_t, j)}$ for each $j \in [1, L(w_t)-1]$, we got gradient is:
$$ \nabla \log p(w_t | w_{t+q}) = [ 1 - \sigma (hs_j) ] \cdot [\![ n(w_t, j+1) = ch(n(w_t, j)) ]\!] \cdot v_{w_{t+q}} $$$$ \nabla \sum_{-c \leq{q} \leq{c},q\neq{0}} \log{p(w_t | w_{t+q})} = \sum_{-c \leq{q} \leq{c},q\neq{0}} [ 1 - \sigma (hs_j) ] \cdot [\![ n(w_t, j+1) = ch(n(w_t, j)) ]\!] \cdot v_{w_{t+q}} $$if (hs) for (d = 0; d < vocab[word].codelen; d++) {
f = 0;
l2 = vocab[word].point[d] * layer1_size;
// l2 is index j in equation
// Propagate hidden -> output
for (c = 0; c < layer1_size; c++) f += neu1[c] * syn1[c + l2];
// f is +- hs_j
if (f <= -MAX_EXP) continue;
else if (f >= MAX_EXP) continue;
// approximation
// may be round is better
else f = expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))];
// 'g' is the gradient multiplied by the learning rate
// why sub code[d]?
// another sigmoid property
// \sigma(x) = 1 - \sigma(-x)
// code[d] is 0 or 1
g = (1 - vocab[word].code[d] - f) * alpha;
// Propagate errors output -> hidden
for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1[c + l2];
// Learn weights hidden -> output
for (c = 0; c < layer1_size; c++) syn1[c + l2] += g * neu1[c];
}
From the code We can see that, she or he uses $v_{mcw}$ in place of $v_{w_{t+q}}$
$$ hs_j = [\![ n(w_t, j+1) = ch(n(w_t, j)) ]\!] \cdot {v'_{n(w_t, j)}}^T v_{mcw} $$"syn1[l2]"
is $v'_{n(w_t, j)}$, then "f"
in the above code before "expTable"
is $\pm hs_j$.
And $[ 1 - \sigma (hs_j) ] \cdot
[\![ n(w_t, j+1) = ch(n(w_t, j)) ]\!]$ is "1 - vocab[word].code[d] - f"
after "expTable"
, because of the equation:
So "vocab[word].code[d] == 0"
for $[\![ n(w_t, j+1) = ch(n(w_t, j)) ]\!] = +1$,
and "vocab[word].code[d] == 1"
for $[\![ n(w_t, j+1) = ch(n(w_t, j)) ]\!] = -1$,
for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1[c + l2];
caculates the gradient of $ v_{w_{t+q}} $ for each $q \in [-c, c], q\neq{0}$
After for loop "neu1e"
is the added weight vector for each $v_{w_{t+q}}$.
And the gradient of $ v'_{n(w_t, j)}$ for each $j \in [1, L(w_t)-1]$ is caculated as:
$$ \nabla \sum_{-c \leq{q} \leq{c},q\neq{0}} \log{p(w_t | w_{t+q})} = cw \cdot [ 1 - \sigma (hs_j) ] \cdot [\![ n(w_t, j+1) = ch(n(w_t, j)) ]\!] \cdot v_{mcw} $$The code doesn't multiply cw.
for (c = 0; c < layer1_size; c++) syn1[c + l2] += g * neu1[c];
update the $v'_{n(w_t, j)}$ weight vector.
when using negative sampling¶
$w_t is\, w_O$, $w_{t+q} is\, w_I$ in equation(2)
And
$$ ns_{x(t+q)} = {v'_{w_x}}^T \cdot v_{w_{t+q}} $$$w_x \in \{ w_t, w_i \sim P_n(w) \}$, $q \in [-c, c], q\neq{0}$
Then
When update $ v'_{w_t} $, we got gradient is:
$$ \nabla \log p(w_t | w_{t+q}) = [ 1 - \sigma(ns_{t(t+q)}) ] \cdot v_{w_{t+q}} $$$$ \nabla \sum_{-c \leq{q} \leq{c},q\neq{0}} \log{p(w_t | w_{t+q})} = \sum_{-c \leq{q} \leq{c},q\neq{0}} [ 1 - \sigma(ns_{t(t+q)}) ] \cdot v_{w_{t+q}} $$When update $ v'_{w_i}, w_i \sim P_n{w} $, we got gradient is:
$$ \nabla \log p(w_t | w_{t+q}) = [ 1 - \sigma(-ns_{i(t+q)}) ] \cdot -v_{w_{t+q}} $$$$ \nabla \sum_{-c \leq{q} \leq{c},q\neq{0}} \log{p(w_t | w_{t+q})} = \sum_{-c \leq{q} \leq{c},q\neq{0}} [ 1 - \sigma(-ns_{i(t+q)}) ] \cdot -v_{w_{t+q}} $$When update $ v_{w_{t+q}} $ for each $q \in [-c, c], q\neq{0}$, we got gradient is:
$$ \nabla \log p(w_t | w_{t+q}) = [ 1 - \sigma(ns_{t(t+q)}) ] \cdot v'_{w_t} + \sum_{i}^{k} E_{w_i \sim P_n(w)} \left[ [ 1 - \sigma(-ns_{i(t+q)}) ] \cdot -v'_{w_i} \right] $$$$ \nabla \sum_{-c \leq{q} \leq{c},q\neq{0}} \log{p(w_t | w_{t+q})} = \nabla \log p(w_t | w_{t+q}) $$if (negative > 0) for (d = 0; d < negative + 1; d++) {
// target is w_O, w_i
if (d == 0) {
target = word;
label = 1;
} else { // random sample negative weight vector
next_random = next_random * (unsigned long long)25214903917 + 11;
target = table[(next_random >> 16) % table_size];
if (target == 0) target = next_random % (vocab_size - 1) + 1;
if (target == word) continue;
label = 0;
}
l2 = target * layer1_size;
f = 0;
// caculate ns
// syn1neg[l2] is v', neu1 is v_mcw
for (c = 0; c < layer1_size; c++) f += neu1[c] * syn1neg[c + l2];
// caculate gradient
if (f > MAX_EXP) g = (label - 1) * alpha;
else if (f < -MAX_EXP) g = (label - 0) * alpha;
// \sigma(x) = 1 - \sigma(-x), and 0 label for -ns
else g = (label - expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]) * alpha;
// neu1e is added weight vector for each w_{t+q}
for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1neg[c + l2];
// update v'
for (c = 0; c < layer1_size; c++) syn1neg[c + l2] += g * neu1[c];
}
The code uses $v_{mcw}$ in place of $v_{w_{t+q}}$
$$ ns_{x(t+q)} = {v'_{w_x}}^T \cdot v_{mcw} $$$w_x \in \{ w_t, w_i \sim P_n(w) \}$, $q \in [-c, c], q\neq{0}$
the gradient of ${v'_{w_x}},\, w_x \in \{ w_t, w_i \sim P_n(w) \}$ is caculated as:
$$ \nabla \sum_{-c \leq{q} \leq{c},q\neq{0}} \log{p(w_t | w_{t+q})} = cw \cdot [ 1 - \sigma(\pm ns_{x(mcw)} ) ] \cdot \pm v_{w_{mcw}} $$The code doesn't multiply "cw"
Because the equation $ \sigma(x) = 1 - \sigma(-x)$,
the gradient of ${v'_{w_x}},\, w_x \in \{ w_t, w_i \sim P_n(w) \}$ is caculated as:
$$ \nabla \sum_{-c \leq{q} \leq{c},q\neq{0}} \log{p(w_t | w_{t+q})} = \begin{cases} - \sigma( ns_{x(mcw)} ) \cdot v_{w_{mcw}} & \quad \text{if } -ns_{x(mcw)} \\ [ 1 - \sigma(ns_{x(mcw)} ) ] \cdot v_{w_{mcw}} & \quad \text{if } ns_{x(mcw)} \\ \end{cases} $$The code above uses "label = 0"
to caculate the gradient of $v'_{w_t}$,
"label = 1"
to caculate the gradient of $v'_{w_i}$,
The gradient of $ v_{w_{t+q}} $ is caculated as:
$$ \nabla \sum_{-c \leq{q} \leq{c},q\neq{0}} \log p(w_t | w_{t+q}) = [ 1 - \sigma(ns_{x(mcw)} ) ] \cdot v_{w_{mcw}} + \sum_{i}^{k} E_{w_i \sim P_n(w)} \left[ - \sigma( ns_{x(mcw)} ) \cdot v_{w_{mcw}} \right] $$for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1[c + l2];
caculates the gradient of $ v_{w_{t+q}} $ for each $q \in [-c, c], q\neq{0}$
After for loop "neu1e"
is the added weight vector for each $v_{w_{t+q}}$.
finally updates $ v_{w_{t+q}} $ for each $q \in [-c, c], q\neq{0}$¶
// hidden -> in
for (a = b; a < window * 2 + 1 - b; a++) if (a != window) {
c = sentence_position - window + a;
if (c < 0) continue;
if (c >= sentence_length) continue;
last_word = sen[c];
if (last_word == -1) continue;
for (c = 0; c < layer1_size; c++) syn0[c + last_word * layer1_size] += neu1e[c];
}
From the code above we can see that when updates each $v_{w_{t+q}}$, it uses the same vector "neu1e"
skip-gram¶
from IPython.display import Image
Image("./skip-gram.png")
maximize the following average log probability:¶
(4) $$ \frac{1}{T} \sum_{t=1}^{T} \sum_{-c \leq{j} \leq{c},j\neq{0}} \log{p(w_{t+j} | w_t)} $$
Same reason, I change the index $j$ to index $q$ due to conflict with index $j$ in hierarchical softmax.
(4) $$ \frac{1}{T} \sum_{t=1}^{T} \sum_{-c \leq{q} \leq{c}, q\neq{0}} \log{p(w_{t+q} | w_t)} $$
The most difference between skip-gram and continuous bag of words in the code is that when train skip-gram, updates the weight vectors for every window word.
Actually, these equations exchange $w_{t+q}$ with $w_t$, and don't use $\sum_{-c \leq{q} \leq{c}, q\neq{0}} \log{p(w_{t+q} | w_t)}$ as "y"
when using hierarchical softmax¶
$w_{t+q}$ is $w$, $w_{t}$ is $w_I$ in equation(1)
And
$$ hs_j = [\![ n(w_{t+q}, j+1) = ch(n(w_{t+q}, j)) ]\!] \cdot {v'_{n(w_{t+q}, j)}}^T v_{w_t} $$$q \in [-c, c], q\neq{0}$
Then
When update $ v_{w_t}$, we got gradient is:
$$ \nabla \log p(w_{t+q} | w_t) = \sum_{j=1}^{L(w_{t+q})-1} [ 1 - \sigma (hs_j) ] \cdot [\![ n(w_{t+q}, j+1) = ch(n(w_{t+q}, j)) ]\!] \cdot v'_{n(w_{t+q}, j)} $$When update $ v'_{n(w_{t+q}, j)}$ for each $j \in [1, L(w_{t+q})-1]$, we got gradient is:
$$ \nabla \log p(w_{t+q} | w_t) = [ 1 - \sigma (hs_j) ] \cdot [\![ n(w_{t+q}, j+1) = ch(n(w_{t+q}, j)) ]\!] \cdot v_{w_t} $$$q \in [-c, c], q\neq{0}$
But, the code actually uses cbow model¶
The word2vec C implementation doesn't use these gradients of skip-gram.
Tt actually uses continuous bag of words model, when you require that train using skip-gram.
I don't know why.
if (hs) for (d = 0; d < vocab[word].codelen; d++) {
f = 0;
l2 = vocab[word].point[d] * layer1_size;
// Propagate hidden -> output
// l1 is w_{t+q}, l2 is n(w_t, j)
for (c = 0; c < layer1_size; c++) f += syn0[c + l1] * syn1[c + l2];
if (f <= -MAX_EXP) continue;
else if (f >= MAX_EXP) continue;
else f = expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))];
// 'g' is the gradient multiplied by the learning rate
g = (1 - vocab[word].code[d] - f) * alpha;
// Propagate errors output -> hidden
for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1[c + l2];
// Learn weights hidden -> output
for (c = 0; c < layer1_size; c++) syn1[c + l2] += g * syn0[c + l1];
}
The code in the above is same as train continuous bag of words model, except that it replaces
"neu1[c]"
with "syn0[c + l1]"
.
The gradients used are hierarchical softmax of CBOW, so actually train cbow model.
when using negative sampling¶
$w_{t+q} is\, w_O$, $w_t is\, w_I$ in equation(2)
And
$$ ns_{xt} = {v'_{w_x}}^T \cdot v_{w_t} $$$w_x \in \{ w_{t+q}, w_i \sim P_n(w) \}$, $q \in [-c, c], q\neq{0}$
Then
When update $ v'_{w_{t+q}}$ for each $q \in [-c, c], q\neq{0}$, we got gradient is:
$$ \nabla \log p(w_{t+q} | w_t) = [ 1 - \sigma(ns_{(t+q)t}) ] \cdot v_{w_t} $$When update $ v'_{w_i}, w_i \sim P_n{w} $, we got gradient is:
$$ \nabla \log p(w_{t+q} | w_t) = [ 1 - \sigma(-ns_{it}) ] \cdot -v_{w_t} $$When update $ v_{w_t}$ we got gradient is:
$$ \nabla \log p(w_{t+q} | w_t) = [ 1 - \sigma(ns_{(t+q)t}) ] \cdot v'_{w_{t+q}} + \sum_{i}^{k} E_{w_i \sim P_n(w)} \left[ [ 1 - \sigma(-ns_{it}) ] \cdot -v'_{w_i} \right] $$But, the code again uses cbow model¶
The word2vec C implementation doesn't use these negative sample gradients of skip-gram.
Tt actually uses continuous bag of words model, when you require that train using skip-gram.
if (negative > 0) for (d = 0; d < negative + 1; d++) {
if (d == 0) {
target = word;
// should target = last_word;
label = 1;
} else {
next_random = next_random * (unsigned long long)25214903917 + 11;
target = table[(next_random >> 16) % table_size];
if (target == 0) target = next_random % (vocab_size - 1) + 1;
if (target == word) continue;
label = 0;
}
l2 = target * layer1_size;
f = 0;
// l1 is w_{t+q}, l2 is in [w_t, w_i \sim P_n(w)]
// l1 should be w_t
for (c = 0; c < layer1_size; c++) f += syn0[c + l1] * syn1neg[c + l2];
if (f > MAX_EXP) g = (label - 1) * alpha;
else if (f < -MAX_EXP) g = (label - 0) * alpha;
else g = (label - expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]) * alpha;
for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1neg[c + l2];
for (c = 0; c < layer1_size; c++) syn1neg[c + l2] += g * syn0[c + l1];
}
Again the code in the above is same as train continuous bag of words model, except that it replaces
"neu1[c]"
with "syn0[c + l1]"
.
The gradients used are hierarchical softmax of CBOW, so actually train cbow model.
finally updates $ v_{w_{t+q}} $ for each $q \in [-c, c], q\neq{0}$¶
for (c = 0; c < layer1_size; c++) syn0[c + l1] += neu1e[c];
But it should update $v_{w_t}$
Implementation¶
famous implementations have:
Future works¶
I plan to implement a C++ version word2vec using correct gradients in recent weeks.
Conclusion¶
Word2vec is a powerful way to model languages.
But the original C implemetation doesn't use correct gradients for skip-gram model, neither does Gensim.
I have not watch the word2vec implementation of Deeplearning4j, so I can't give a conclusion.
References¶
Some papers:
- Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word Representations in Vector Space. In Proceedings of Workshop at ICLR, 2013.
- Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed Representations of Words and Phrases and their Compositionality. In Proceedings of NIPS, 2013.
Other useful urls:
Comments